588 J. Opt. Soc. Am. A/Vol. 25, No. 3/March 2008

Sutherland et al.

Cephalopod coloration model. I. Squid
chromatophores and iridophores

Richard L. Sutherland,"®* Lydia M. Miithger,® Roger T. Hanlon,® Augustine M. Urbas," and Morley O. Stone’

! Air Force Research Laboratory, 3005 Hobson Way, Wright-Patterson Air Force Base, Ohio 45433-7707, USA
*Science Applications International Corporation, 4031 Colonel Glenn Highway, Dayton, Ohio 45431, USA
3Marine Resources Center, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543, USA
*Corresponding author: sutherlandr@saic.com

Received September 11, 2007; revised November 28, 2007; accepted December 3, 2007;
posted December 21, 2007 (Doc. ID 87405); published February 7, 2008

We have developed a mathematical model of skin coloration in cephalopods, a class of aquatic animals. Cepha-
lopods utilize neurological and physiological control of various skin components to achieve active camouflage
and communication. Specific physical processes of this coloration are identified and modeled, utilizing avail-
able biological materials data, to simulate active spectral changes in pigment-bearing organs and structural
iridescent cells. Excellent agreement with in vitro measurements of squid skin is obtained. A detailed under-
standing of the physical principles underlying cephalopod coloration is expected to yield insights into the be-
havioral ecology of these animals. © 2008 Optical Society of America
OCIS codes: 000.1430, 050.7330, 160.1435, 240.0310, 260.3160, 330.1690.

1. INTRODUCTION

Color is an important and ubiquitous property in biology.
Although animal pigments have long been studied, struc-
tural coloration in biology has become a subject of recent
intense interest, with many examples of exotic photonic
structures discovered in both aquatic and terrestrial sys-
tems [1-3]. Since most animals are visual, color plays a
significant role in, for example, predator—prey relation-
ships, mating, and the generation of visual signals be-
tween conspecific or interspecific animals. A crucial de-
fense mechanism for many animals is camouflage.
Cephalopods—a class of aquatic invertebrates (Phylum
Mollusca) that includes squid, octopus, and cuttlefish—
have developed a highly sophisticated system of dynamic
camouflage [4,5]. They adapt their color and body pattern
to various visual features of the immediate background.
Color is controlled through a combination of both pig-
ments and photonic structures in an elaborate skin con-
figuration. This produces a rich repertoire of spectra and
patterns that is highly adaptive to changing backgrounds
and situations. Current biological research is focused on
understanding how cephalopods neurologically perform
these adaptations [6-9].

Although cephalopod skin has been widely studied and
characterized biologically, there has been relatively little
work done in modeling its optical properties. Masthay
presented a quantitative model of pigment absorption in
animals, including cephalopods, based solely on Beer’s
law, but did not include scattering or diffuse reflection
[10]. Denton and Land discussed the mechanism of irides-
cent reflections from fish and cephalopods in terms of
quarter-wave thin-film stacks [11], and Méathger and Den-
ton described theoretical calculations of spectra that they
related qualitatively to the iridescence of loliginid squid
[12]. In none of these previous works, however, were de-
tailed calculations of spectra compared quantitatively to
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experimental spectra or combined to illustrate coloration
effects in different environments.

Our objective is to provide answers to questions such as
the following: Given a particular light source, what does a
patch of cephalopod skin look like to an observer? Particu-
larly, what is the color rendition of the skin in a spatial
resolution element (i.e., a pixel)? What are the physical
properties of the skin that lead to this coloration? In an-
swering such questions we must consider the multiple op-
tical interactions of various skin components (pigments
and structural elements), which can undergo physiologi-
cal or neurological modification, and the fact that within
an aquatic environment the nature of ambient light can
range from highly collimated to diffuse. Results of this
study should enhance our understanding of how these
animals employ dynamic camouflage to adapt to their
background.

We have developed a model of the reflective properties
for a generic cephalopod skin consisting of any number of
layers with various optical elements, both structural and
pigmented. The model incorporates multiple internal re-
flections among the various skin components and consists
also of various submodels describing the optical proper-
ties of each skin element individually. In this paper we
present these submodels for two components, namely, the
pigmented chromatophores and the structural iri-
dophores, for which the spectral reflectance and transmit-
tance can be changed by the animal, either neurologically
or physiologically, to achieve dynamic camouflage. We
compare these models with in vitro experimental mea-
surements of skin components in squid. Materials proper-
ties, such as index of refraction, absorption and scattering
coefficients, and dispersion are obtained either from the
literature or through comparison of the models with ex-
perimental data. A future paper will combine these re-
sults with those of submodels for static skin components

© 2008 Optical Society of America



Sutherland et al.

to investigate multilayer effects on the total animal re-
flectance with a generic cephalopod skin.

2. THEORY

The topmost layers of a squid skin are pigment-bearing
organs called chromatophores. Each chromatophore com-
prises a sacculus containing pigment granules of a spe-
cific color (brown, red, or yellow) and surrounded by a se-
ries of radial muscles. When the muscles contract, the
sacculus is expanded, thus spreading out the pigment
granules. The sacculus is elastic so that when the muscles
relax, the chromatophore retracts. The pigment colors are
ordered, going from yellow to red to brown in skin depth
[9]. Subjacent to the chromatophores are structural color
elements called iridophores. These consist of several iri-
dosomes that have a multilayer structure consisting of
thin, transparent protein platelets [13] sandwiched be-
tween spacers of cytoplasm. The iridophores produce iri-
descent colors upon illumination by white light. The in-
tensity and color of iridophores can change in the
presence of the neuromodulator acetylcholine [14].

Ultimately, we wish to relate the various components of
radiant flux (both collimated and diffuse) at the bound-
aries of the various skin layers. To this end we define the
partial reflectances and transmittances for each layer. By
partial we mean the reflectance or transmittance that
would be measured in an experiment for a completely iso-
lated layer using either pure collimated or pure diffuse
light, and separately detecting specularly and diffusely
reflected or transmitted light. For example, if we desig-
nate J,. ., as the diffuse component of the total reflected
light for a purely collimated input I,, then the ratio R4
=Jg4. /1, is the partial reflectance. A similar definition
holds for the partial transmittance T,.;. We also define
partial reflectance and transmittance for collimated light
produced from collimated light (R., and T..) and diffuse
light produced from diffuse light (R;; and Ty ).

For the models presented here we have made some sim-
plifying assumptions. All elements, as well as the entire
skin itself, are embedded in a watery environment. Hence
we can ignore interfacial Fresnel reflections except those
that arise from components of interest. These include
specular reflections from iridophores and scattering from
pigment granules. The scattering elements are taken to
behave as ideal Lambertian surfaces, yielding only diffuse
reflectance. They do, however, have some specular trans-
mittance (i.e., regular transmittance, light that is neither
absorbed nor scattered) as well as diffuse transmittance.
Therefore, specular reflection arises only from smooth
photonic structural elements. We assume that there are
no index heterogeneities in these components. Therefore,
they have diffuse reflectance or transmittance only when
irradiated by diffuse light.

A. Chromatophore Layers

The pigment granules of chromatophores absorb and scat-
ter light. We thus define absorption and scattering coeffi-
cients « and o, respectively, both having units of inverse
length. (We note that these parameters are commonly
designated by a and b, respectively, in the ocean optics
community [15].) To distinguish forward and backward
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scattering, we introduce the forward scattering ratio ¢,
which is defined as the ratio of light scattered into the for-
ward hemisphere to the total scattered light [16].

We treat the chromatophore ideally as a disk of uni-
form thickness d and elliptical cross section. Electron mi-
croscopy data for an expanded chromatophore indicate
that a typical pigment granule size is ~300 nm and the
mean center-to-center spacing of granules is >300 nm
[17]. Applying the standard Rayleigh criterion, the chro-
matophore would be optically smooth if sh <\/8n, where
Sh is the root-mean-square roughness height measured
from some reference plane, which would imply o&h
<55 nm for A\=600 nm and n=1.33. Since the surface is
not optically smooth, we make the simplifying assump-
tion that R..~0. Although this does not entirely rule out
the presence of a specular component, it is likely to be
small and not contribute significantly to the total skin re-
flectance. Hence we consider a model for the isolated chro-
matophore as illustrated in Fig. 1. Let a prime symbol in-
dicate the derivative with respect to z, where z is the
distance measured from the front of the chromatophore
(see Fig. 1). Designating I as the forward flux and ¢/ as the
backward flux, the radiation transport equations may
then be written as [16]

I'=-(a+0)l, (1a)
Iy=~naly - (1= §oly+ 9l - §od g+ Eal,, (1b)

Jg=nad g+ 9(1-§odg—n(l-§oly—(1-§ol., (1o

which is a variant of the Kubelka—Munk model [18]. In
Egs. (1b) and (1c¢) we have introduced the effective path
length coefficient # for diffuse light, defined by =%
=(1/cos ), where 6 is an angle of propagation with re-
spect to the z axis and the brackets indicate an average
over the full solid angle in the forward direction weighted
by the angular distribution of the diffuse radiation
[16,18]. Note that I, represents the flux of ballistic (un-
scattered) photons and thus has an effective path length
coefficient of one.

This system of coupled differential equations consti-
tutes what is known as a three-flux model and may be
solved exactly. The solutions are similar in many respects
to those for the two-flux model (forward and backward dif-
fuse light flux only) given by Kubelka [18], and the four-
flux model (forward and backward collimated and diffuse
light flux) given by Maheu et al. [16]. In both of these ear-
lier works reflection from a background was also included.
This type of reflection is ignored here since we are consid-
ering an isolated chromatophore. Appendix A gives the
detailed solution of this particular three-flux model,

Ic,O Ic(z) Ic(d)
lgo l4(2) l4(d)
de0 Jq(2)

z=0 z=d

Fig. 1. Three-flux model for computing transmittance and re-
flectance of a chromatophore.
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which differs to some extent from these previous develop-
ments. The results for the collimated—collimated and
diffuse—diffuse components are simple:

T, = exp[- (a+ o)d], (2)
K

dd = - , (3)

k cosh prd +[a+ (1 - §olsinh yrd

(1 - ¢ o sinh rd

dd = : ) (4)

k cosh prd + [a+ (1 - &) o]sinh nxd

where

K= \/a/2+2(1 -doa. (5)

The results for the collimated—diffuse components can be
expressed analytically but are rather complex. They may
be simplified, however, by using an approximation. For
pure collimated light incident on a particle with size com-
parable to or greater than the wavelength of light, the
scattering is peaked sharply in the forward direction, and
the effective path length coefficient is not much larger
than one [16]. Typical pigment granule size is ~300 nm
[17]. Hence for visible collimated light we make the ap-
proximation #=1. Then the expressions for the
collimated—diffuse components reduce to (see Appendix A)

K
Fea= k cosh kd + [a + (1 - &) olsinh kd - exp[- (a + 0)d],
(6)
(1-¢osinh «d
cd = (7)

kcosh kd + [a+ (1 - §olsinh kd

Note that we do not make the same approximation in Egs.
(3) and (4) since, by definition, incident diffuse light is al-
ready propagating in multiple directions. For isotropic
diffuse light, =2 (see, for example, [18]).

In laboratory experiments the incident light is purely
collimated, and R.; and T=T,.,+T,; are measured for
near-normal incidence. Forming the quantities ¢ and b in
terms of measured parameters

1+R%-T?
o=
2R
b= V"az— 1. (8)

Equations (2) and (5)—(7) may be used to extract the back-
ward scattering and absorption coefficients of the pig-
ment. These are often referred to in the literature as S
and K [19]. The results are

9)

bR 4
T b

1
S=(1-¢§o= vd sinh‘1<
and
K=a=(1-a)S. (10)

Since the chromatophores are characterized in vitro, the
thickness is not known. Consequently, the experimentally
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determined parameters are in the form of products Sd
and Kd, where S and K are proportional to pigment con-
centration and hence inversely proportional to the volume
of the sacculus. Although the volume, and hence the pig-
ment concentration, is conserved as the sacculus expands
(i.e., S and K are constants), the path length d is reduced,
producing changes in the reflectance and transmittance
as indicated by the explicit dependence of Eqgs. (2)—(4), (6),
and (7) on d. Consequently, the extracted experimental
parameters Sd and Kd are inversely proportional to the
cross sectional area of the chromatophores. For constant
volume, the cross sectional area and thickness are recip-
rocally related, and an increase in one by some factor re-
sults in a decrease in the other by the same factor. Assum-
ing that the shape of the chromatophore remains an
elliptical disk as its volume changes, we introduce a scal-
ing factor p for the radius (or geometric mean radius) of
the elliptical cross section. Therefore, to simulate expan-
sion and retraction of the chromatophore, which dynami-
cally changes the reflectance and transmittance, the pa-
rameters Sd and Kd are scaled as p~2. The default
parameters (p=1) are determined by the size of the chro-
matophores for which R,; and T are measured.

Finally, note that the total scattering coefficient is
needed for calculating T,. and is given by o=S/(1-§).
Hence, values for the forward scattering ratio must be as-
sumed for modeling purposes. Some guidance for select-
ing these values may be found in the literature [16,20].
Vargus and Kinlasson give numerical methods for esti-
mating the forward scattering ratio based on particle size
and complex index of refraction using Lorenz—Mie theory
[21].

B. Iridophore Layer
Iridophores consist of stacked layers of iridosomes, which
themselves comprise 2—-10 layers of thin protein platelets
separated by thin layers of cytoplasm. The platelets are
composed of a recently identified protein family named re-
flectins [13], which are found in the iridophores of certain
squid. Platelets have been studied by electron microscopy,
and a typical thickness is ~100 nm. Cytoplasmic spacer
thickness is of the same order [22]. Reflectin has been re-
combinantly expressed and cast as thin films. A refractive
index of 1.591 has been measured using a prism coupling
technique [23]. The refractive index of cytoplasm is 1.33,
similar to that of water [11]. Iridosomes are tightly
packed in the iridophore cell and thus approximate a thin
film, high—low-index multilayer stack with Bragg reflec-
tion in the visible or near-infrared spectral regions. Large
numbers of Bragg reflectors are situated in the iridophore
layer, forming iridescent splotches in the skin [6,14].
Iridophores have been shown to have properties similar
to that of quarter-wave stacks [11,12], although the de-
tailed spectra have not been previously modeled. Close
examination of iridophore micrographs reveals that, al-
though the platelets have reasonably uniform thickness,
the cytoplasm spacers do not [23]. Moreover, the platelets
are not ideally flat but exhibit some small, apparently
random curvature. Hence, to model these reflectors we
first calculate reflectance and transmittance by approxi-
mating them as ideal multilayer thin-film stacks using
standard methods and then modify the results to include
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the effects of their random structure. We thus treat an en-
tire iridophore (consisting of one or more iridosomes) as a
single multilayer stack, employing a 2X2 matrix ap-
proach to calculate the forward and backward propagat-
ing electric field amplitudes [24], the results of which we
summarize next.

The incident and reflected field amplitudes, E, and E,,
respectively, expressed in a column vector, may be related
to the transmitted field amplitude, E;, by a 2 X 2 transfer

matrix P:
E, E,
E, =P ol (11)

The multilayer-film (mf) reflectance and transmittance
are then given by

Er z P21 2 ( )
Ry=|—=—| =|=—1|, 12
"B | | Py
ngcos 0, | E, |2 ngcos,| 1 |2
= ——— = | = ———| ], (13)
ngcos 6y | E, ngcos 6y | P11

where the subscripts 0 and s refer to the input and sub-
strate (exit) media, respectively. We will assume these
media to be identical. Also, since R, =1-T,, (the iri-
dophores are nonabsorbing), we need only focus on the Pq;
element of the transfer matrix.

The multilayer consists of N alternating high-index (H)
and low-index (L) pairs having refractive index nz and ny,
and thickness hy and hj, respectively. Assuming that
each pair in the stack is identical, the transfer matrix can
be written in terms of the power of a single matrix M, i.e.,
P=F; ;M F;};, where M is the product of four matrices,

M=®5F P Frp. (14)

We have taken the input and exit media to have the same
refractive index as the low-index film, i.e., similar to wa-
ter. In the product M there are two phase matrices, given
by

exp(—i2mmnhy cos G,/\) 0
D, = 0 ,

exp(+i2mn,hy cos G,/\)

(15)

where the subscript 2=H or L, \ is the wavelength, and 6,
is the angle of propagation with respect to the film-
normal in the kth layer; and there are two Fresnel matri-

ces, given by
1 1 i
Fj = —[ . } , (16)

Lin | Tk

where jk=HL or LH, and t;;, and r;;, are the usual Fresnel
transmission and reflection coefficients for the jkth inter-
face, which depend on the polarization of light [25].

To a good approximation, we take the cytoplasm to
have an index of refraction like water (n,,~1.33). The re-
fractive index dispersion of reflectin has been fit to a
Cauchy equation, n,(\)=A,+B,/\+C,/\2, where \ is ex-
pressed in nanometers, with A,=1.56713, B,=
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-13.386 nm, and C,=16.290 X 103 nm? [23]. However, this
result was obtained from measurements done on a cast
film, whereas in vivo the protein is normally in an aque-
ous solution bound within a cell membrane. In addition,
physiologically active squid iridophores have been found
to change reversibly from a noniridescent to an iridescent
state. These active cells also demonstrate the same re-
sponse in vitro to the neuromodulator acetylcholine. This
has been correlated by transmission electron microscopy
studies to the physical structure of the platelets. In the
iridescent iridophores the platelets are thin and uni-
formly electron-dense. Noniridescent iridophore platelets
exhibit a flocculent or ribbonlike structure containing
electron-lucent and electron-dense regions. In addition,
the platelet regions are thicker in the noniridescent state
[14,22]. We can simulate these properties of the iri-
dophores by assuming reflectin to be in an aqueous solu-
tion having some equilibrium volume fraction f; of water
when the iridophore is maximally iridescent. As the iri-
dophore changes to a noniridescent form, we assume that
the platelet region is invaded with a waterlike fluid,
swelling the region and creating a new equilibrium vol-
ume fraction f>f,. We thus let the high-index region be
characterized by a refractive index given by a simple mix-
ture formula,

ng(\) =fn,(N) + (1 = f)n,(N), a7

and a thickness that changes linearly with the volume
fraction of water,

dh

hH=ho+d_f(f—f0)~ (18)

In this model, A is the equilibrium platelet thickness for
volume fraction f, and dh/df is the rate that the thick-
ness changes with respect to an increase in the volume
fraction of water. Both f; and dh/df are treated as phe-
nomenological parameters that can be adjusted to fit ex-
perimental data.

Next we incorporate small irregularities into the iri-
dophore structure. Although the platelets are highly or-
dered, there appears to be some random structure super-
imposed upon this order. Figure 2 gives a schematic
illustration of the platelet shape and spacing irregularity.
If we let h;, designate the mean separation of platelets,
then the spacer thickness at any point can be given by
hr+{, where { is a position-dependent (positive or nega-
tive) random variable. Furthermore, it appears from elec-
tron micrographs that there is no statistical correlation in
spacer thickness from layer to layer [26]. Thus, we as-
sume that each spacer is characterized by a statistically
independent random variable {,. We also assume that the
curvature of the platelet is small everywhere; i.e., al-
though the spacing between platelets changes continu-
ously with position, the rate of change or slope of the
platelet surface is very small. Consequently, we take the
deviation of any ray trajectory through each layer from
that of an ideal, parallel layer stack to be negligibly small.
Then the result of the random spacing in the iridophore is
to add a random phase ¢, =271y, cos 6./\ to the diago-
nal elements of each phase matrix ®;, in the transfer ma-
trix P. Since the phase matrix is diagonal, this change
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Fig. 2. Schematic illustration of the random spacing of platelets
in iridophores. The platelets (dark) have a uniform thickness iy,
while the spacer thickness varies as hy+(, for layer k, where
{x(x) is a random variable. A sensor will integrate over the spatial
variable x within a pixel and yield a response related to the re-
flectance (or transmittance) averaged over the random variables.
The mean spacer thickness is A;.

can be accomplished by making the substitution ®;,
—D,®;, for all N low-index phase matrices in the transfer
matrix product P, where

exp(-15¢,) 0

k= 0 exp(+id¢y) |’ (19)
and % is now a parameter that runs from 1 to N. Note that
under these conditions the transfer matrix can no longer
be written in terms of the simple power of a single matrix
since each matrix M, is different in general and continu-
ously variable across the iridophore.

Everything we have discussed up to this point concerns
a single iridophore. However, within a typical spatial res-
olution element of the observer there will generally be a
large ensemble of iridophores making up an iridescent
splotch in the iridophore layer. It is unlikely that these
iridophores are identical; i.e., they will display some small
deviations in Bragg wavelength due to angular or
platelet-separation variations. We will account for these
differences by assuming a Gaussian distribution of Bragg
wavelengths over the iridophore ensemble, which can be
accomplished by the introduction of another single ran-
dom variable {,. Accordingly, we now modify the model by
letting any single iridophore have a mean spacer thick-
ness given by hp+{,, where {, is a random variable over
the entire ensemble of iridophores. The mean spacer
thickness for the entire ensemble is then A .

The transmittance of the iridophore layer now becomes
a function of N+1 random variables. A sensor will yield a
response that is an average of the transmittance (or re-
flectance) over these variables by integrating spatially
across a pixel. Assuming Gaussian statistics for each ran-
dom variable, we define normalized probability distribu-
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tions p(&y),p(L1),p(Ls),...,p({yn), all of which have zero
means and respective standard deviations

09,01,09,...,0N, and we assume that p({;) is the same for
any iridophore in the ensemble. Then the average
collimated—collimated transmittance is given by

T f T, o (P PP ..

Xp({ndipdsrdds ... ddy, (20)

where {{,} represents the set of random variables, %
=1...N, for any single iridophore; T,, is a function of
wavelength, angle of incidence, and polarization; and
R..=1-T,. For simplicity, we will assume that o}, =0, for
all k=1...N, where o, is a constant (o,;# o). Therefore,
the statistics of the iridophores are characterized by just
two parameters. In Appendix B we give an approximate
form of Eq. (20) to order 0’?, which is valid for o <\.

To calculate the diffuse—diffuse components, we assume
a Lambertian light source with constant spectral radiance
L, independent of the angle of propagation. The spectral
optical power incident on a point on the surface of the iri-
dophore, having an element of surface area dA, is given
by d?®, y=L, cos dAdQ, where 6 is the angle of incidence
between the iridophore-normal and a line connecting a
point centered on an element dA’ of the light source with
the point on the surface of the iridophore, and dQ
=sin 6dfd ¢ is the solid angle subtended by dA’ at the
point on the iridophore (¢ is the azimuth angle). The
power transmitted by the iridophore is given by dzd))\’t
=T,.(\,0)L, cos §sin 6d0dpdA. Dividing by dA and inte-
grating over the hemispherical solid angle to obtain the
spectral (vector) irradiance I, (this assumes that the
source is large compared to the iridophore), the diffuse—
diffuse transmittance is given by the ratio

I /2
TN = L = f T....(\, 6)sin 26d0. (21)
I)\,O 0

A similar expression holds for R;;, or one can be com-
puted and the other determined by R;;+73,=1 since
there is no absorption. We assume that diffuse light is
completely unpolarized. Since T, and R, depend on po-
larization, the collimated—collimated component in the in-
tegrand of an expression like Eq. (21) is understood to
represent equal contributions of s polarization and p po-
larization, i.e., Tee ;= (Tee s+ Tee p)/ 2.

Finally, we assume that the iridophore platelets and
spacers contain no index heterogeneities. Since the curva-
ture of the platelets is small, so that deviations of ray tra-
jectories are negligible, the iridophores produce very little
incoherently scattered light. We thus set R,;~T,.;~0.

3. EXPERIMENT

Skin specimens were prepared from squid (Loligo pealeii)
for chromatophore and iridophore measurements. Small
dissected skin elements were pinned onto the Sylgard-
covered dish of a goniometer. The specimens were covered
with sea water for preservation of their properties during
the measurements. Spectral reflectance and transmit-
tance measurements were obtained using an Ocean Op-
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tics fiber optic spectrometer attached to a dissecting mi-
croscope. Details of the experimental apparatus and
methods can be found in [6].

Spectral transmittance was measured by directing
light from the bottom of the sample at normal incidence
through the sample and into the microscope. The micro-
scope objective restricted the angle of incidence for reflec-
tance measurements to no less than ~10°. The angle of
incidence in water was thus ~7.5°, satisfying near-
normal incidence conditions. Reflectance measurements
were performed using a black felt background beneath
the skin samples. This background produced a very flat
spectral reflectance of approximately 0.025 across the vis-
ible spectrum. Corrections were made for Fresnel reflec-
tions at the air—water and air—Petri-dish interfaces. The
measurements recorded were total reflectance and trans-
mittance, i.e., the sum of specular and diffuse compo-
nents.

4. RESULTS AND DISCUSSION

A. Chromatophores

Reflectance and transmittance spectra were measured for
6-8 chromatophores of each color. Average spectra were
then computed for brown, red, and yellow chromato-
phores, and K(\) and S(\) were extracted from these av-
erages using Eqs. (8)-(10). These spectral properties are
plotted in Fig. 3. With these values of K(\) and S(\) we
can scale the reflectance and transmittance of individual
chromatophores of variable size (area and thickness) us-
ing Egs. (2), (6), and (7) (p=1) and by adjusting the scale
factor p. Examples of this scaling for individually selected
chromatophores, compared to data, are given in Figs. 4
and 5. We should point out that at present we are limited
to this semiempirical method of predicting R and T spec-
tra for the chromatophores based solely on their size, us-
ing experimentally extracted K and S values. Detailed
modeling from first principles (e.g., Mie theory) would re-
quire knowledge of n and % spectra (real and imaginary
parts of the complex index of refraction, respectively) for
the pigments. This information is not currently unavail-
able. Although it may appear that the results discussed
here are circular, i.e., measured R and T spectra are used
to determine K and S spectra, which in turn are used to
predict R and 7, it is important to note that one cannot
simply scale R and T spectra for the varying size of chro-
matophores. This scaling must be done within the argu-
ments of the hyperbolic functions in Egs. (3), (4), (6), and
(7). Also, it is not possible to compute 7., Eq. (2), without
knowledge of S and K. This becomes particularly impor-
tant when dealing with multilayer skin effects (e.g., chro-
matophores over iridophores; see Subsection 4.C), where
the specular reflection from underlying elements depends
on the specular transmittance of the chromatophores.
Moreover, knowledge of S and K spectra also gives us
valuable information about the optical properties of the
pigments themselves, as we discuss below.

The brown chromatophore exhibits the largest absorp-
tion, but we cannot ascertain whether this is due to a
larger absorption coefficient, a larger thickness, or both.
Its spectrum is similar to that of a melanin pigment. The
absorption edges of the red and yellow chromatophores
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Fig. 3. (Color online) Spectral absorption and backscattering co-
efficients (normalized to thickness d) derived from reflectance
and transmittance measurements of the brown, red, and yellow
chromatophores of the squid Loligo pealeii. (a) Absorption (K)
spectra. (b) Backscattering (S) spectra.

are shifted toward the blue, giving them their character-
istic colors. Backscattering coefficient spectra, S(\), for
the brown and red chromatophores are fairly flat, rising
slightly toward the red end of the spectrum; S(\) for the
yellow chromatophore exhibits an inverse dependence on
wavelength, more like a typical Mie scatterer. Again,
since the absolute thickness of these chromatophores is
unknown, we cannot comment on the relative magnitudes
of the backscattering coefficients.

It is interesting to compare these S and K spectra to
those of inorganic paint pigments. A survey of common
colorants is given in [20]. Three of these are visually simi-
lar in color to the chromatophores studied here: Red Iron
Oxide (brownish), Acra Red, and Cadmium Yellow Light.
(Photos of these pigments in [20] can be compared with
the color photos of L. pealeii chromatophores in [6].) Red
Iron Oxide has strong absorption in the blue with a rolloff
toward the red beginning at about 550 nm, similar to the
K(\) spectrum for the brown chromatophore in Fig. 3(a).
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Fig. 4. (Color online) Examples of model fits to specific chro-
matophore reflectance measurements of the squid Loligo pealeii
obtained by using K and S values in Fig. 3 and adjusting the
scaling parameter p.

Likewise, both pigments exhibit a rise in backscattering
coefficient at about the same wavelength. However, for
Red Iron Oxide S(M\) increases by about an order of mag-
nitude between 550 and 600 nm. Clearly, this commercial
pigment is designed to yield high reflectance (~30% for a
26 um thick film [20]), whereas the cephalopod brown
chromatophore reflectance is very low, typically <2% [6].
Acra Red and the squid red chromatophore both exhibit a
maximum absorption in the visible at ~500 nm. They
both also display a relative minimum in S(\) at ~550 nm
followed by a relative maximum at ~600 nm. However,
S(\) changes by about a factor of 5 in this spectral range
for Acra Red compared to the approximate 10% change

1.00 . . T T .

o
o'
o

o
o))
o

©
N
o

Transmittance

o
()
o

0p [BRRPFEETTT . .
450 500 550 600 650 700 750
Wavelength (nm)

Fig. 5. (Color online) Examples of model fits to specific chro-
matophore transmittance measurements of the squid Loligo pea-
leii obtained by using K and S values in Fig. 3 and adjusting the
scaling parameter p. These data are not from the same samples
given in Fig. 4.
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seen in Fig. 3(b) for the squid chromatophore. The absorp-
tion spectra of both Cadmium Yellow Light and the squid
yellow chromatophore have a rolloff toward the red begin-
ning at ~500 nm, although it is much steeper for the in-
organic pigment. The S(\) spectra are much different for
these two, however, rising nearly monotonically toward
the blue in Fig. 3(b), but low in the blue end of the spec-
trum and rising sharply at ~500 nm for Cadmium Yellow
Light. Again, this pigment was evidently designed as a
high yellow reflector (~40% for an 11 um film [20],
whereas typically R <5% for the yellow chromatophore of
L. pealeii [6]). Finally, assuming d~1 um as a typical
thickness for expanded chromatophores [17], the maxi-
mum absorption coefficient would be approximately
3 um~1, which is as great as an order of magnitude larger
than K for the inorganic pigments. However, the back-
scattering coefficients would be in the range of
~0.05—0.08 um™! in the region of minimum absorption,
which is generally smaller than the maximum S of the in-
organic pigments (with the exception of Acra Red, a low-
reflectance pigment) [6,20]. We conclude that the chro-
matophores function more effectively as color absorptive
filters than colored reflectors. The biological significance
of this is possibly that, in some patterns, chromatophores
filter light reflected from structures beneath them to fine-
tune a particular body pattern.

Since the absorption of the brown pigment is large, it
strongly filters light transmitted to and reflected from
other elements beneath it. Hence, regardless of the num-
ber of elements in the skin structure, the brown chro-
matophore largely determines the reflected spectrum
when it is present (i.e., the skin will appear brown). Light
is only partially filtered by the red and yellow chromato-
phores. Consequently, components beneath them more
prominently affect the overall reflection spectrum.

B. Iridophores

Reflection spectra were collected for the red dorsal iri-
dophore of the squid L. pealeii. The iridophores in this
area of the mantle are parallel to the skin [12]. The angle
of incidence in air was approximately 10°. A comparison of
iridophore model calculations to these experimental data
is given in Fig. 6. The angle of incidence in water is taken
to be 7.5°.

For these calculations we have selected N=20, a typical
number of platelets in the iridophores of squid. We also
let A7, =75 nm and hy=140 nm, which are within the ex-
perimental error of red iridophore spacer and platelet
measurements performed by transmission electron mi-
croscopy on the squid Lolliguncula brevis [23]. Other pa-
rameter selections were fy=0.4, 0,=2.4nm, and o
=7.6 nm. We see that o,<\ and that the standard devia-
tion o( of spacer thickness over the ensemble of iri-
dophores is about 10% of the mean.

The theoretical plots in Fig. 6 illustrate the effects of
the random variables. The ideal stack yields a peak that
is too large, having several sidelobes and a general shape
that is inconsistent with the data. Introducing a random
spacing over the ensemble of iridophores washes out the
sidelobes and lowers the peak reflectance. Further ran-
domizing the layer spacings of each iridophore has a mini-
mal effect on the peak and width of the reflection band
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Fig. 6. (Color online) Fit of iridophore model to reflectance data
from the red dorsal iridophore of the squid Loligo pealeii. The
dotted curve gives the calculated spectrum of an ideal thin-film
stack (Bragg reflector), while the dashed curve illustrates the ef-
fect of averaging over an ensemble of Bragg reflectors with ran-
domly variable mean spacer thickness. The solid curve shows the
effects of additionally averaging over individual random spacing
of each spacer layer and provides a good fit to the data (circles).
The inset shows the dependence of bandwidth AN on o and the
ratio of out-of-band to in-band integrated reflectance on o.

but raises the baseline. The net result is in excellent
agreement with the data (circles).

The statistical parameters oy and o, have a direct im-
pact on coloration effects of the iridophores. As the inset
to Fig. 6 shows, the bandwidth A\ of the calculated reflec-
tance, defined as the full width of the reflection notch at
half-maximum reflectance (FWHM), increases as oy in-
creases for constant o;. For reference, AN=50.8 nm for the
ideal Bragg reflector. The random platelet spacing has a
somewhat different effect. Since increasing o, causes the
baseline reflectance to rise while having a very minor ef-
fect on the peak, we consider the integrated spectral re-
flectance in band and out of band. The former is obtained
by integrating R .(\) over A\ about the peak reflectance,
while the latter is given by the integration over the re-
mainder of the spectrum, excluding A\. The inset to Fig. 6
shows how the ratio of the out-of-band to in-band inte-
grated reflectance varies with o, for constant oy. For ref-
erence, this ratio is 21.2% for the ideal Bragg reflector. We
also note that these statistical parameters have relatively
minor polarization effects, and these can only be observed
at high angles of incidence.

To assess the coloration effects, we plot the chromatic-
ity coordinates for these cases of variable o and o, in Fig.
7. For these calculations we have used the CIE 1931 color
matching functions and D65 standard daylight illumi-
nant. Variation of o results in a color perception shift
from orange-pink to orange, while that for o, manifests a
color change from reddish orange to pink. The pink color
will get fainter as o, continues to increase, and we antici-
pate that the iridophore will take on a silvery appearance
for large o,. We emphasize that these coloration effects
correspond to what a standard human observer would see
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Fig. 7. (Color online) Theoretical chromaticity coordinates for
the iridophore of Fig. 6 for various values of the statistical pa-
rameters o, and o,. Also shown is the CIE 1931 chromaticity dia-
gram. CIE standard daylight illuminant D65 was used for these
calculations. Circles represent various o values, ranging from
0 to 12 nm, for a constant o,=2.4 nm. Squares represent various
o, values, ranging from 0 to 4.8 nm, for a constant ¢,=7.6 nm.

for squid near the surface of clear water. For deeper wa-
ter, the illuminant spectrum would need to be modified
based on the spectral attenuation coefficients of the water
[27].

A partially active dorsal iridophore was treated with
acetylcholine in vitro, and the change in the reflection
spectrum was observed over time. These data are shown
in Fig. 8. Over a period of 60 s the peak reflection doubles
and shifts ~50 nm to the blue. We model this using Egs.
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Fig. 8. (Color online) Theoretical reflectance plots and experi-
mental data for an active iridophore treated with acetylcholine
(ACh). The points show the measured spectra at various times
after application of ACh. The curves are fits to the data obtained
from a dynamic iridophore model by adjusting the volume frac-
tion f of water in the platelet regions of the iridophore.
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(17) and (18) in the following way. First, we determine pa-
rameters for the case of optimum reflection (i.e., at 60 s).
For this we set hy=139.6 nm, f;,=0.28, 0,=2 nm, and o
=11 nm to develop a good fit to the data. As before, A,
=75 nm, 6,,,=7.5°, and N=20. Notice that the volume
fraction of water is smaller and the standard deviation oy
is larger than those for the fit in Fig. 6. The reason for
this is that spectra in Fig. 8 are somewhat broader. Next
we selected a value of di/df=69.1 nm. This is consistent
with a cutoff of iridophore reflectance at ~700 nm, i.e.,
the peak wavelength of the iridophore reflection spectrum
just before it is extinguished [6]. Finally, we adjusted the
volume fraction f, as given in Fig. 8, to fit the calculated
spectra to the data. The results are in good agreement
with the measured spectra. There does appear to be some
asymmetric broadening of the spectral reflection data to-
ward the red as the peak decreases, not accounted for in
the model, which could possibly indicate the development
of a quadratic chirp in the grating [28]. Since Eqs. (17)
and (18) are in simultaneous agreement with all of the
data sets using reasonable fitting parameters, we con-
clude that, to a good approximation, the refractive index
and the thickness of the platelets depend linearly on the
volume fraction of water (or waterlike fluid) present in
the platelet regions.

C. Chromatophore Over Iridophore

We give now an example of a combination spectrum by
overlaying a red chromatophore on a blue iridophore. The
results are shown in Fig. 9. For these calculations we se-
lected p=1 and £=0.7 for the red chromatophore. This
value of the forward scattering ratio is typical for diffuse
reflectors [19,21]. For the iridophore Ayz=90 nm, A
=71 nm, f,=0.3, N=20,0,=2.4 nm, and 0(,=7.6 nm. The
total reflection spectrum (specular plus diffuse) is in good
qualitative agreement with optical measurements of this
type of chromatophore—iridophore combination [6]. The
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Fig. 9. (Color online) Calculated reflection spectra for a red
chromatophore, a blue iridophore, and the combination of a red
chromatophore over a blue iridophore. The chromatophore and
total reflectance spectra have been multiplied by a factor of 5 for
ease of viewing.
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chromaticity diagram of Fig. 10 illustrates the type of dy-
namic color changes that squid can use for camouflage
and communication. As the chromatophore expands over
the iridophore (given by the circles in Fig. 10 for increas-
ing p, assuming that the chromatophore always fills the
field of view), the skin color gradually changes from pink
(p=0.5) to purplish pink (p=1). This is also in agreement
with color photos of this chromatophore-iridophore combi-
nation [6]. As the chromatophore continues to expand, the
color would shift to purplish blue and eventually to blue
for p=2 or 3. These changes may occur within a fraction of
a second. Note that the color for p=3 is virtually indistin-
guishable from that of a bare iridophore. However, the
overlaid chromatophore will produce a diffuse component
of the blue reflection, due to scattering in the chromato-
phore, that is relatively insensitive to viewing angle, un-
like the bare iridophore, which produces a purely specular
reflection. A physiological change of the iridophore to a
noniridescent state, which occurs over several seconds,
would produce the color change given by the squares in
Fig. 10, with the parameter f increasing in equal incre-
ments from 0.3 to 0.9 for p=1.8. In this case, the skin color
passes through various areas (blue, green, yellow, orange,
pink) of the chromaticity diagram. The case of f=0.9 is
virtually indistinguishable from that of a bare chromato-
phore. Combinations of other iridophores, some situated
at large angles with respect to the skin, and chromato-
phores lead to a rich repertoire of intensity, color, and
body patterns available to the animal for adaptation to
different backgrounds and situations.

5. CONCLUSIONS

In summary, we have presented coloration models appli-
cable to the pigment-bearing chromatophores and irides-
cent iridophores of squid skin. Dynamic effects have been
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Fig. 10. (Color online) Theoretical chromaticity coordinates for
a blue iridophore overlaid with a red chromatophore illustrating
color changes for various values of p and f. Also shown is the CIE
1931 chromaticity diagram. CIE standard daylight illuminant
D65 was used for these calculations. Circles represent various p
values, ranging from 0.5 to 3, for a constant f=0.3. The leftmost
circle represents a bare iridophore. Squares represent various [
values, ranging from 0.3 to 0.9, for a constant p=1.8.



Sutherland et al.

included. Calculated spectra agree very well with in vitro
optical measurements of squid skin components, and com-
bination reflection spectra, for example, a chromatophore
overlaid on an iridophore, also agree qualitatively with
experimental data. Chromatophores yield low diffuse re-
flectance due to small backscattering coefficients, but
their strong absorption allows fine-tuning of spectral re-
flections from skin components beneath them. The inten-
sity of these reflections can change in fractions of a second
by expansion or retraction of the chromatophore, which
can be modeled by the adjustment of a single scaling pa-
rameter (p). The color and intensity of iridophores can be
changed reversibly by a mechanism that seemingly allows
invasion of the platelet regions with a waterlike fluid.
These changes depend simply on the volume fraction (f) of
this fluid. Cephalopods exert direct control over these pa-
rameters. Varying just these two control parameters (p
and f), we have shown that skin color for a
chromatophore—iridophore combination can be changed
dramatically in a time scale from a fraction of a second to
several seconds. A future paper will combine these prop-
erties of squid with models and data from cuttlefish for
other skin components to obtain a full-skin coloration
model for a generic cephalopod. This study provides the
physical basis for an improved understanding of the be-
havioral ecology of these animals.

APPENDIX A

In this appendix we present the solutions to Egs.
(1a)—(1c), yielding expressions for the partial transmit-
tances and reflectances of the chromatophores. Equation
(1a) can be integrated immediately, giving

I.(z)=1,¢exp[- (a+0)z]. (A1)

Setting z=d in Eq. (A1) and forming the ratio I.(d)/1.(0),
we obtain Eq. (2) for T',.. Now substitute Eq. (A1) into Eq.
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(1b) and differentiate the resulting equation. After com-
bining the result with Eqgs. (1b) and (1c), a simple second-
order differential equation is obtained:

I:;_ 7]2K21d=_BIIc7 (A2)
where
Br=oléla+ o) + gléa+ (1 - Hal}. (A3)

Performing a similar set of operations on Eq. (1c), we ob-
tain the second-order differential equation for J:

Iy — Pk g = - B, (A4)
with
Br=o(n-1)(1-§(a+o0). (A5)
Equations (A2) and (A4) have the general solutions
L= e dge e — P (ag)
(76)? = (a+ 0)?
and
J,=Be™ + Bye 7% & Pl (A7)

(76)? = (a+ 0)*’

respectively. Integration constants A, Ay, By, and By can
be found by applying the boundary conditions 1,;(0)=1; ,
J4(d)=0, and the expressions for 1;(0) and J(0) resulting
from Eqgs. (1b) and (1c) to Egs. (A6) and (A7). After some
long and tedious but straightforward algebra, we find an
expression for J; g=J;(0) and form the ratio
Ja0
Ry=———=(01-9Ry+qRy, (A8)
Io+14p

where q=1, /(I 0+14). Here Ry, is given by Eq. (4), and

b, cosh nxd — by sinh nkd

R

(A9)

= () - (a + 0)2J{k cosh mxd + [a+ (1 - §olsinh 7xd)’
[
by =Bk —[k+a+(1-Hole @9, (A10) 14(d)

Ti=———=0-9Te+9Teq, (A12)

Io+1ap

by={Bjla+ o - nlx+a+ (1= §ag)eeromd] where T, is given by Eq. (3), and
- (1-§ol(nK)® - (a+0)*]}. (Al1) T.q = a; sinh kd — ay cosh nxd + ag sinh? 7xd

L ﬁ]e—(a+(r)d

In the limit »— 1, B;—0 and Eq. (A9) reduces to Eq. (7). (A13)

Similarly, forming the ratio

B/1-8&0o

éol(ni)? = (a+ 0)?]+ Bila+ o)
= +
k[(7x)% = (a+ 0)?]

T (e = (at )7

TP~ (at 0

7k cosh npid + gla+ (1 - é)o]sinh nxd

{a+ 0 - gre™ @ o L o4 (1= Ho](1 - e @) ginh yxd
X 1—e(@ro-mod _ , (Al4)
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A (A15)
2 = (a+ o)
(1- &2
a (A16)

3 ni cosh prd + pla+ (1 - £)olsinh yrd

In the limit »— 1, Eq. (A13) reduces to Eq. (6).

APPENDIX B

In Eq. (20) we gave an expression for the collimated—
collimated transmittance of an iridophore in terms of an
integral over N+1 random variables. Here we present an
approximation that reduces Eq. (20) to an integration
over a single random variable. Let 7=1/P¢; be the trans-
mission coefficient, and 7=7({y,{{}) is a function of the
N+1 random variables. Then if we let A7(y,{s})
=7(¢y,{{}) — 79, where 19=7({y,{{,}=0), we can write the
multilayer-film transmittance as

Tl Lo {8} = To + 2 Re(mpAT+ AT'AT), (B1)

where T'y= T; 7y (for ng=n,) and the asterisk indicates com-
plex conjugate; T, is the multilayer-film transmittance of
an ideal stack, where the low-index layer has a thickness
hr+{y and is computed using Eqgs. (13)—(18).

We now expand A7 in a Taylor series,

N o2 1 /oA
Aﬁgo,{zk}hEE—( ) o (B2)
{¢,}3=0

k=1 m=1 M\ 9Ly
The partial derivatives in Eq. (B2) will be given in terms

of #"P11/3¢;', which can operationally be obtained by dif-
ferentiating the matrix expressions

a"
—P{4}) =Frp®pFp D) P F ... ®5F gy

agy
a"
X @D(gk)(DLFLH o PuF D) DL
(B3)
and
7"D {(- i2mn /)™ 0
e (k_oz 0 (+i2mmnyn | (BY

Substituting Eq. (B2) into (B1) and using Eq. (B3) and
(B4), the integral in Eq. (20) over the N random variables
{¢;} can be performed term by term. Since we have as-
sumed the variables to be statistically independent, terms

like <§;§g’k’ﬁ'>=<g$><g’,;'> (for E # k'), where the brackets im-
ply averaging over the corresponding variables. Moreover,
for Gaussian statistics only even values of m survive, and
(GHh=1-2-3...(m-1)o}'. We let o}, =0y for all k. Since by
Eq. (B4) the mth order term will be proportional to
(o/N)", we can ignore all terms of order higher than m
=2 when o,<\.

It turns out that a Taylor series expansion in terms of
o does not work as well since the derivatives of 7 with re-
spect to ¢, are rather large near the zero crossings of 7.

Sutherland et al.

Hence, many more terms in the expansion would have to
be included. It is thus simpler to integrate over {, numeri-
cally. The final expression for T, is then given by

Ty = (T = Ty + 2 Re(rp(AD), (B5)
T, = f T(¢0)p()d o, (B6)
1Y . PAGAG
mhdn=-3 | 7wty — | Eplo)di,
2k:l —o ﬁgk {¢,)=0
(B7)
with
1 &
(&) = oo P\ 7202 (B8)
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