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p.i.  post infection 

SpO2  peripheral blood oxygen saturation 

TNFα  tumor necrosis factor alpha 

Page 3 of 43



 4 

Outline 

Abstract 

Introduction 

Methods 

Animal Husbandry 

Influenza Virus infection 

Viral Titer 

Bronchoalveolar lavage fluid 

MLN cell suspensions 

Peripheral blood oxygen saturation 

Flow cytometry 

Cytokine profile analysis 

DC isolation and culture 

Transwell migration assay 

Statistical analysis  

Results 

Discussion 

References 

Figure Legends 

Figures 

Page 4 of 43



 5 

Abstract 

Background: Arsenic (As) exposure is a significant worldwide environmental health 

concern. We have recently reported that 5-week exposure to environmentally relevant 

levels (10 and 100 ppb) of As in drinking water significantly altered components of the 

innate immune response in mouse lung, which we hypothesize are an important 

contributor to the increased risk of lung disease in exposed human populations.   

Objectives: Our findings led us to investigate the effects of As exposure on respiratory 

Influenza A (H1N1) virus infection, a common and potentially fatal disease.  

Methods: In this study, C57BL/6J mice were exposed to 100 ppb As in the drinking water 

for 5 weeks, followed by inoculation intra-nasally with a sub-lethal dose of Influenza 

A/PuertoRico/8/34 (H1N1) virus. Multiple endpoints were assessed post infection. 

Results: Arsenic was associated with a number of significant changes in response to 

influenza, including an increase in morbidity and higher pulmonary influenza virus titers 

on day 7 post-infection.  There were also many alterations in the immune response 

relative to As-unexposed controls, including a decrease in the number of dendritic cells in 

the mediastinal lymph nodes early in the course of infection.  

Conclusions: Our data indicate that chronic As exposure significantly compromises the 

immune response to infection. Alterations in response to repeated lung infection may also 

contribute to other chronic illnesses, such as bronchiectasis, which is elevated by As 

exposure in epidemiology studies. 
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Introduction 

Chronic exposure to arsenic (As) is a significant worldwide environmental health 

concern (ASTDR 1999; NRC 1999). Contamination of drinking water by natural 

geological sources of As is the primary route of exposure. The EPA standard for drinking 

water As exposure was recently reduced to 10 ppb (0.13 µM). However, this standard 

does not cover private wells. In many areas of the United States, As is naturally found at 

levels higher than the federal guidelines and a significant portion of the population may 

be drinking excess As chronically (Karagas et al. 2002). In the U.S., this may represent as 

many as 25 million people, and worldwide there are hundreds of millions of people who 

are exposed to levels of As far above 10 ppb. In addition, significant biological effects of 

As have been observed in cell culture and in animal models at and below the current 10 

ppb EPA standard (Andrew et al. 2007; Kozul et al. 2009; Lantz et al. 2007; Straub et al. 

2008).  

Chronic exposure to As has been associated with many diseases, including lung, 

liver, skin, kidney, and bladder cancer; cardiovascular disease; diabetes; and reproductive 

and developmental defects (Abernathy et al. 1999; NRC 1999; Smith et al. 1992; Tapio 

and Grosche 2006; Watanabe et al. 2003). Multiple mechanisms have been associated 

with As induced disease risk, including endocrine disruption, oxidative stress, alterations 

in cell signaling, DNA repair and others (Andrew et al. 2006; Aposhian and Aposhian 

2006; Kaltreider et al. 2001; Rossman 2003). However, differences in dose, time, and 

tissue, as well as co-exposures, can result in differing mechanisms and complicate the 

interpretation of disease risk under varying exposure conditions. Recent reports have 

indicated that chronic As exposure in human populations results in an increased risk of a 
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variety of lung diseases, including impaired lung function, bronchiectasis, lung cancer, 

and increased risks of other respiratory illnesses (Ghosh et al. 2007; Raqib et al. 2009; 

Smith et al. 2006).  The ability of As to increase the risk of lung disease through 

ingestion, as opposed to inhalation, make it a unique and intriguing lung toxicant.  

Arsenic has been identified as a potent immuno-modulatory agent in many 

experimental models and epidemiological studies (Andrew et al. 2008; Hernandez-Castro 

et al. 2009; Lemarie et al. 2006; Nayak et al. 2007; Zhou et al. 2006). We have recently 

shown that chronic low dose As exposure can profoundly alter the gene and protein 

expression of many regulators of the innate immune system in a mouse model of 

exposure (Kozul et al. 2009).  We have hypothesized that As-induced alterations on the 

immune system in the lung will lead to a compromised response to a subsequent immune 

challenge. In this study, we tested this hypothesis by investigating whether chronic low 

dose As exposure could affect the severity of influenza A (H1N1) infection in a murine 

model. Based on our previous studies, we were specifically interested in the innate 

immune response to infection, including the migration capability of innate immune cells, 

such as dendritic cells (DC). Dendritic cells are antigen presenting cells (APCs) that 

activate naïve T cells and their functioning is critical to the initiation of a primary 

immune response.  With particular respect to the lung, where there is persistent exposure 

to environmental pathogens, DCs constantly sampling the environment, processing 

antigen and controlling tolerance, demonstrating their indispensable role in immune 

regulation. 

Respiratory infections with influenza are a significant public health concern and a 

major cause of morbidity and mortality worldwide (Fauci 2005). It is estimated that 5-
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15% of the population will contract influenza infection annually, resulting in over 3-5 

million hospitalizations and between 250,000 and 500,000 deaths worldwide. Identifying 

risk factors, including environmental exposures, such as As, could have a substantial and 

immediate impact on public health (Lawrence 2007). Additionally, the impact of As 

exposure on the potential for a pandemic flu outbreak is of particular concern, 

considering that many of the geographic areas with confirmed human cases of avian flu 

or H1N1 (swine) flu are known to include populations that also have significantly 

elevated As exposures, such as in Southeast Asia and Mexico.  The recent outbreak of 

H1N1 flu in Mexico and across the world has demonstrated the impact a pandemic flu 

can have on global populations. Age and underlying medical conditions have an 

influence on the susceptibility and severity of infection; however, these factors cannot 

account for the extreme variability observed in response to influenza infection. Many 

questions have been raised concerning the increased mortality as a result of H1N1 

infection in Mexico, while the disease has been relatively mild in other infected 

populations. There is growing evidence that exposure to environmental toxicants can 

dramatically alter anti-viral responses, including dioxin and cigarette smoke (Burleson et 

al. 1996; Gualano et al. 2008; Warren et al. 2000). In this current study, we show that 

chronic low dose As exposure can profoundly alter the response to influenza A (H1N1) 

infection. Understanding the role of As in response to such viral challenges will be 

important in the overall assessment of the public health risk. 
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Methods 

Animal Husbandry. All animal studies were conducted in accordance with AALAC 

approved guidelines using a protocol approved by IACUC at Dartmouth Medical School. 

All animals were treated humanely and with regard for alleviation of suffering. Seven 

week-old C57BL/6J male mice (Jackson Laboratories, Bar Harbor, ME) were housed on 

AIN-76A diet (ad lib) (Harlan-Teklad, Madison, WI) and Carefresh bedding in 

autoclaved cages. Background As concentrations in the diet were less than 20 ppb (Kozul 

et al. 2008). At the start of the experiment, animals were given drinking water (ad lib, 

changed weekly) with or without addition of 100 ppb sodium arsenite. Mice were 

maintained on control or 100 ppb As water throughout the course of infection. 

Influenza Virus Infection. Following 5 weeks of As exposure, Mice were anesthetized 

with 9:1 ketamine:xylazine mix at 0.1ml/30 g body weight and inoculated intranasally 

with 0.5LD50 of standard laboratory influenza A virus A/PuertoRico/8/34 (H1N1) strain. 

Morbidity (measured as weight loss) was monitored daily over the course of infection. 

Body weight losses of greater than 20% was the endpoint for termination of the study, 

based on IACUC compliance. 

Viral Titer. Whole lungs from infected mice were homogenized, snap frozen and stored 

at -80°C. Influenza virus titers in whole lung homogenate were quantified using TCID50 

determination.  Briefly, 10x serial dilutions of lung samples were added in triplicate to 

Madin-Darby canine kidney (MDCK) cells in a 96 well plate. Plates were incubated at 

37ºC for 5 days. Infected cells were identified by chicken RBC hemagglutination. 

Bronchoalveolar lavage fluid. Lungs were lavaged in situ with 1 ml of PBS. Remaining 

cells were collected with 4 sequential washes. Bronchoalveolar lavage fluid (BALF) was 
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centrifuged and cells retrieved from all 5 washes were combined for total cell counts 

Total cell counts (excluding non-nucleated cells) were obtained using a hemocytometer 

with trypan blue exclusion. Cytospin preparations were stained with Protocol Hema 3 

stain set (Fisher, Houston, TX). Measurements of cytokine and albumin levels in the 

BALF were assessed from the first 1 ml lavage only. Albumin ELISA kit (Bethyl labs, 

Montgomery, TX) was used to assay albumin concentrations in BALF per manufacturer’s 

instructions.  

MLN cell suspensions. Cell suspensions were prepared from the mediastinal lymph nodes 

(MLN) by gentle mincing and digestion in collagenase (1 mg/ml, type II, Worthington 

Biochemical Corp., Lakewood, NJ) and DNAse (0.02 mg/ml, grade II bovine pancreatic, 

Roche, Manheim, Germany) for 45 minutes at room temperature, followed by the 

addition of EDTA (0.1 M) for an additional 5 minutes. 

Peripheral Blood Oxygen Saturation. SpO2 was measured using the MouseOx system 

(Starr Life Sciences Corp., Allison Park, PA) according to manufacturer’s protocol.  

Conscious mice were restrained and the sensor was placed at the base of the tail. Mice 

were acclimated in the restraint and data was collected for a period of 10 seconds per 

mouse.  

Flow Cytometry. BALF and MLN single cell suspensions were collected as described 

above. Red blood cells were lysed by incubation with buffered ammonium chloride 

solution. FITC conjugated CD4 antibody and PerCpCy5.5 conjugated CD8 antibody, 

APC conjugated CD11c, and PerCpCy5.5 conjugated B220 were purchased from 

eBioscience (San Diego, CA).  Biotin conjugated CD103 was purchased from BioLegend 

(San Diego, CA). Samples were run on FACSCalibur cytometer (BD Biosciences, San 
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Jose, CA). All data were analyzed with FlowJo software (Tree Star, Ashland, OR). 

Cytokine Profile Analysis. Cell-free BALF was analyzed using the Bio-plex suspension 

array system using fluorescently dyed Luminex microspheres beads (Bio-Rad, Hercules, 

CA). Cytokines and chemokines measured in this study were Interleukin 1 beta (IL-1b), 

Interleukin 6 (IL-6), macrophage inflammatory protein 1-alpha (MIP-1a), RANTES, 

monocyte chemoattractant protein 1 (MCP-1), Interleukin 10 (IL-10), macrophage colony 

stimulating factor (M-CSF), macrophage inflammatory protein-2 (MIP-2), macrophage 

inflammatory protein 1-beta (MIP-1b), and tumor necrosis factor alpha (TNFα). BALF 

samples were assayed in duplicate. Cytokine/chemokine standards were prepared in PBS 

and were assayed in triplicate. Assay was performed according to manufacturer protocol.  

DC isolation and culture. The DC culture protocol is described previously (Castellino et 

al. 2000) and is a modification of Inaba et al. (Inaba et al. 1993). Briefly, bone marrow 

cells were collected from the femurs of C57BL/6J mice exposed to control of 100 ppb As 

in the drinking water for five weeks (in the absence of infection). Cells were resuspended 

at 10
6
 cells/ml in RPMI 1640 media (10% heat-inactivated fetal/bovine serum, 100 U/ml 

penicillin/streptomycin, 50 mM β-mercaptoethanol, 5% cell culture supernatant from 

X63 cells secreting granulocyte macrophage colony-stimulating factor (GM-CSF)). Cells 

were plated at 2 ml/well into 12 well plates. All cells were cultured in the absence of As. 

On days 2, 4 and 6, the cells were washed, non-adherent cells were removed and fresh 

media was applied. On day 7, cells were scraped and collected for transwell migration 

assays. 

Transwell migration Assay. On day 7, bone marrow cells were counted with trypan blue 

exclusion using a hemoctyometer to assess survival. No differences in cell survival were 
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observed between cells isolated from control and As exposed mice. Costar Transwell 

plates (6.5 mm diameter insert, 8.0 µm pore size, polycarbonate membrane, Corning 

Costar, Corning, NY) were precoated with 2 µg/ml fibronectin and 500 uL of 10 µM 

ADP was added to the bottom well. 100,000 cells were added in serum free media to the 

top chamber of a transwell plate and allowed to migrate for 2 hr. Following migration 

period, any cells remaining on top of the membrane were removed and the membranes 

were then rinsed with PBS. Migrated cells were fixed, permeabilized with 0.01% Triton 

X-100 (Sigma, St Louis, MO) and stained with crystal violet (Sigma, St Louis, MO). The 

membranes were mounted on microscope slides for analysis. Q-Fired cooled CCD 

camera attached to an Olympus microscope was used to capture 10 random fields per 

membrane.  Migrated cells were counted with SigmaScan Pro imaging analysis software. 

Counts for all 10 fields were averaged to give a mean cell count for each membrane. All 

experiments were completed at least three times with n = 3 per trial.  

Statistical Analysis Statistical analysis was performed GraphPad Prism Version 5.0a for 

Macintosh using a two-tailed unpaired t-test with 95% confidence interval and one way 

ANOVA (* p  < 0.05; ** p  < 0.01, *** p < 0.001). Error bars represent mean + SEM. 
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Results 

As shown in Figure 1, following a five-week exposure to 100 ppb As in the 

drinking water, mice infected with influenza A (H1N1) displayed a significant increase in 

morbidity.  By day 8 post-infecton (p.i.), the As-exposed mice displayed such severe 

morbidity (e.g., body weight decrease of 20% or greater) that those experimental groups 

were euthanized in compliance with institutional IACUC standards. Due to the severity 

of these responses, subsequent analyses focused on day 3 and day 7 p.i.. In contrast, a 

parallel group of control mice infected with influenza but not exposed to As displayed a 

moderate weight loss, but then began to recover weight by day 10 p.i., with complete 

weight recovery by day 16 p.i. (Figure 1). Exposure to As alone in the absence of viral 

infection did not influence weight or growth over the five-week period, nor did anesthesia 

alone, with or without respiratory exposure vehicle, in either the control or As-exposed 

mice (data not shown).  Thus, the increased morbidity was due to the combination of As 

in drinking water and influenza infection at an infectious dose at which mice not exposed 

to As recover. 

Given that the inability to properly clear virus from the lung is positively 

correlated with increased risk of adverse outcomes, we examined the levels of influenza 

A virus in the whole lung homogenates using TCID50 determination at day 7 p.i.. Relative 

to As-unexposed controls, the As-exposed mice exhibited a significant 10-fold increase in 

viral titers at this time point, correlating with their relative increase in morbidity (Figure 

2).  

At day 7 p.i., obvious gross histology changes in the As exposed mice, including 

edema and hemorrhaging, could be observed by visual inspection of the whole lung 
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(Figure 3A). Capillary leakage into the lungs was measured by assaying albumin 

concentrations in the BALF. Albumin concentrations were found to be significantly 

increased in the As-exposed vs. unexposed mice at day 7 p.i.. Albumin concentrations did 

not differ between control or As-exposed mice prior to infection or at day 3 p.i. (Figure 

3B). Since an increased severity of influenza infection often correlates with a decrease in 

peripheral blood oxygen saturation (SpO2), the oxygen saturation levels in infected 

control and As-exposed conscious mice at day 7 p.i. were measured. The As-exposed 

mice displayed a significant decrease in SpO2 levels compared to control mice (Figure 

3C). The average SpO2 reading for the control mice infected with influenza was 95.2% 

(range 93-97.5%) and the average SpO2 reading for As-exposed mice infected with 

influenza was 82.9% (range 75-90%). Three of the six As-exposed mice had SpO2 

readings considered to be dangerously low, i.e., at or below 80%. Exposure to As in the 

absence of infection had no effect on peripheral oxygen saturation levels. 

Cellular infiltration into the lungs was investigated at 36 hr and at day 3 and day 7 

p.i.. We previously reported that exposure to 100 ppb As for 5 weeks in uninfected mice 

did not induce changes in the total number of cells recovered from BALF, nor did it alter 

gross changes in lung histology (Andrew et al. 2007; Kozul et al. 2009). However, in the 

current experimental model, significant differences in the total number of cells recovered 

post-infection from the BALF of control and As-exposed mice were observed. At 36 hr 

and day 3 p.i., As-exposed mice had a significant decrease in the total number of cells 

recovered from the BALF compared with control mice. Conversely, at day 7 p.i., As-

exposed mice had a significant increase in the number of cells in the BALF (Figure 4A) 

relative to controls.  
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To assess whether changes in total cell populations were accompanied by changes 

in the specific cell types recruited to the lung, we conducted a morphological analysis of 

the cells after staining of cytospin preparations. Representative cytospin preparations are 

shown in Figure 4E-J.  The absolute numbers of macrophages and neutrophils within the 

lung were significantly and profoundly affected by As exposure (Figure 4B-C). The total 

number of macrophages (Figure 4B) and neutrophils (Figure 4C) were significantly 

decreased at the early stages of infection and increased at day 7 p.i. in As-exposed mice 

vs. controls, whereas lymphocytes were decreased in the As-exposed mice at day 3 but 

were similar to controls at day 7 p.i. (data not shown). In addition to these differences in 

cell number, the percentages of these different cell types within the total cells recovered 

from the BALF also changed, as shown in Figure 4D.   

Although the absolute number of lymphocytes was largely unaffected at day 7 

p.i., when subtypes within the lymphocyte populations were analyzed by flow cytometry, 

CD8+ cells were found to be significantly increased in terms of both cell percentages 

(Figure 5B) and total cell numbers (Figure 5C) in As-exposed mice relative to controls. 

The percentage of CD4+ T cells did not differ by As exposure (data not shown).    

We previously reported that As exposure decreased basal cytokine levels in the 

lungs of uninfected mice (Kozul et al. 2009). We used a Bioplex assay to examine 

cytokine production in the BALF at day 3 and day 7 p.i.. We examined a panel of 10 

cytokines, including IL1b, IL-6, MIP-1a, RANTES, MCP-1, IL-10, M-CSF, MIP-2, MIP-

1b, and TNFα. With the exception of MIP-1a, cytokine production had the same general 

pattern. No significant differences were observed between the control and As-exposed 

mice at day 7 p.i.. However, relative to controls, a significant decrease was observed in 
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the As-exposed mice in 9 out of the 10 cytokines at day 3 p.i. (Figure 6). In some cases, 

such as IL-1b and TNFα, cytokine production was below the limits of assay detection in 

the As-exposed mice. Mip-1a levels were below detection at day 3 p.i. in all mice, but 

indicated a trending increase in the As-exposed animals relative to controls at day 7 p.i. 

(data not shown).  

The early recruitment of DCs to the lymph node is essential for the proper 

initiation of an immune response and we have previously reported that As exposure 

decreases the expression of genes involved in cell adhesion and migration (Kozul et al. 

2009). Therefore, to determine whether the migration of DCs to the lymph node was 

impaired by As exposure, we analyzed the mediastinal lymph nodes (MLN) for DC 

populations at day 3 p.i.. Single cell suspensions from MLN were assessed for DC 

markers CD11c
+
/CD103

+
 and CD11c

+
/B220

+
.  Relative to controls, a significant decrease 

was observed in the total number of cells recovered from the MLN in the As-exposed 

mice at day 3 p.i. (Figure 7A). Flow cytometry staining for CD11c+/CD103+ and 

CD11c
+
/B220

+
 DC types also indicated that these DC populations were significantly 

decreased in the lymph node of As-exposed mice vs. controls at day 3 p.i. (Fig 7B and 

C). No differences were observed in the intensity of the staining (data not shown).  

We then assessed effects of As on DC migration capacity, using primary bone 

marrow DCs isolated from control mice and mice exposed to 100 ppb As for five weeks 

(in the absence of influenza infection). Cells were cultured for 7 days in the presence of 

GM-CSF to produce immature DCs. Relative to controls, cells isolated from As-exposed 

mice had a significant decrease in migration capability towards ADP in a transwell assay 

(Fig 7D), indicating that As alone can compromise aspects of immune cell function and 
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that this is then manifest as a significantly altered innate immune response following viral 

infection. 
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Discussion 

To determine whether chronic low dose drinking water As exposure compromises 

the immune response to respiratory infection, we analyzed the outcome of influenza A 

(H1N1) infection in mice drinking water containing 100 ppb As. Our studies 

demonstrated that As exposure had a significant impact on the immune system, resulting 

in a severely compromised response to influenza A infection and increased morbidity. 

We also observed increased viral titers, capillary leakage, altered cellular responses and 

decreased cytokine production and oxygen saturations in the As exposed mice relative to 

controls.  At early time points post infection, we observed that As exposed mice had an 

attenuated response. Conversely, by the later time points, the As exposed mice displayed 

an excessive cellular inflammatory response to infection, indicated by significant 

increases in the number of cells within the lung and increases in markers of lung injury, 

such as BALF albumin concentrations and decreased oxygen saturations compared with 

controls.  

The initial attenuated immune response in the As exposed mice was expected 

based on our previous results (Kozul et al. 2009). It is clear that As exposure affects a 

variety of aspects of host defense, including responses of macrophages (Lemarie et al. 

2006), lymphocytes (Andrew et al. 2008; Hernandez-Castro et al. 2009), and airway 

epithelial cells (Olsen et al. 2008). Additionally, an appropriate and sufficient response to 

an infectious challenge requires integration of the innate and adaptive immune defenses. 

Given that As exposure has important impacts on both components, it is not unexpected 

that the effects of As exposure on the immune response to viral infection are complex. It 
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is therefore likely that several mechanisms contributed to the adverse outcomes observed 

in the As exposed mice. 

The switch from an inadequate innate immune response at early time points to an 

excessive response at later time points is intriguing, and the underlying mechanism for 

this biphasic response warrants future investigation. The excessive response at late time 

points was also accompanied by considerable hemorrhaging and leakage within the lung. 

It does not appear that this switch was principally chemokine driven, since we observed 

that chemokine levels were not increased at day 7 p.i.. Moreover, it should be noted that 

at this time point there were 2-3 times more cells in the lungs of the As mice compared 

with controls, suggesting that cytokine and chemokine production may still be decreased 

on a per cell basis. However, given that cytokine and chemokine production is a dynamic 

process, we cannot exclude that an increase in cytokine production may have occurred, 

but was not detected at the time points investigated in this study. It is possible that the 

increased number of macrophages and neutrophils at day 7 p.i. may have been the result 

of a compensatory innate response that was not properly initiated early in the course of 

infection. An overly exuberant macrophage and neutrophil response has also been 

observed with highly pathogenic strains of influenza, such as H5N1 (Perrone et al. 2008), 

and the 1918 strain (Kobasa et al. 2007).  Nevertheless, the later response was ineffective 

in controlling levels of virus within the lung, since the titers were increased by ten-fold in 

the As exposed mice relative to control mice at day 7 p.i. The increased viral titers in 

conjunction with the increase in CD8+ cells in the As exposed mice suggest the 

possibility that the CD8+ cells may not have been fully capable of expressing antiviral 

effector activities. Alternatively, the impaired innate response may have resulted in 
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unhindered viral replication that even an exaggerated CD8+ T cell response could not 

effectively control. It is difficult to assess the role of CD8+ T cells in the response using 

this model, because of the high morbidity in the As exposed mice. 

We have also shown that As decreased cell migration, which suggests that the 

critical components of this response were defective. With respect to respiratory viral 

infection, it has been shown that DC migration to the regional lymph nodes early in the 

course of infection is a critical component for initiating an appropriate immune defense 

against influenza infection (Legge and Braciale 2003). The CD11c
+/

B220
+
 DC in the 

mouse lymph node are presumptively immature plasmacytoid dendritic cells, which are 

capable of producing large amounts of type I interferon (Nakano et al. 2001; Siegal et al. 

1999). The CD11c
+/

CD103
+
 DC have been shown to reside in lung mucosa (Sung et al. 

2006). The relative decrease in this population of DCs in the lymph nodes may have 

contributed to the initial attenuated response of As exposed mice and suggests that 

antigen presentation within the lymph node from this subset of resident lung DCs may 

have been compromised. Defective migration by bone marrow derived DCs isolated from 

uninfected As exposed mice demonstrated that As exposure alone compromised critical 

functional components of the innate host defense mechanisms, which would likely have 

consequences in response to many pathogens and other pathological conditions.  

The immune response against pathogens is a tightly regulated equilibrium, 

requiring precise management of effectively clearing pathogen while minimizing 

immunopathologic damage to the host (Bachmann and Kopf 2002). Therefore, it is not 

unexpected that the initial impairment in an appropriate immune response due to As 

exposure could have significant consequences on the ability to clear influenza infection, 
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while prolonged viral carriage may predispose to enhanced tissue injury.  To our 

knowledge, this is the first report showing that chronic low-dose As exposure 

significantly impairs the immune system and, specifically dendritic cells, in response to a 

respiratory virus infection. Further investigation into mechanisms and the effects at lower 

doses of As, such as 10 ppb, will be the basis of future studies. We also hypothesize that 

As exposure will predispose individuals to aberrant responses to other types of infection 

as well. In addition to the potential acute effects as in this study, these aberrant responses 

may place exposed individuals at risk for development of other chronic lung diseases, 

such as bronchiectasis, which has been reported to be significantly elevated in As-

exposed populations (Smith et al. 2006). These results also suggest that chronic As 

exposure, particularly in areas of Southeast Asia and Mexico, may be a factor that could 

enhance the potential impact of a pandemic strain of influenza, should this emerge in the 

human population.  
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Figure Legends 

Figure 1: Chronic drinking water As exposure increased the morbidity of influenza 

infection. Mice were exposed to control drinking water (open circles) or drinking water 

containing 100 ppb As (closed circles) for five weeks. Following exposure, mice were 

infected with a sub-lethal dose of influenza A and morbidity (measured by weight loss) 

was recorded daily. One experiment was conducted for days 0-16 (n=6-8 per group), and 

three additional experimental repeats were conducted for days 0-7  (n=6 per group per 

experiment). Error bars represent mean ± SEM. The p value for overall significance 

between groups exposed to flu alone or As plus flu is p < 0.0001 (Two way ANOVA). 

Significance for individual time point exposures is detailed in the graph. (** p < 0.01, ***p < 

0.001). 

 

Figure 2: Chronic drinking water As exposure increased viral titers on day 7 post infection. 

Mice were exposed to control drinking water (white bars) or drinking water containing 

100 ppb As (black bars) prior to inoculation with influenza A. Whole lung homogenates 

were assessed for viral titers by TCID50 method. Data represent mean ± SEM from two 

experimental repeats (n=3-6 per group). (* p < 0.05, two tailed student’s t-test). 

 

Figure 3: Chronic drinking water As exposure increased capillary leakage at day 7 post 

infection. (A.) Representative lungs from control drinking water and As drinking water 

exposures at day 7 post infection. Lungs were perfused with PBS and inflated. (B.) BALF 

was assessed for albumin by ELISA at the indicated time points. Mice were exposed to 

control drinking water (white bars) or drinking water containing 100 ppb As (black bars) 
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prior to inoculation with influenza A. (C.) Oxygen saturations were measured with the 

MouseOx system at day 0 and day 7 post infection. Data represent mean ± SEM from 

one representative experiment (n=6 per group). (** p < 0.01, ***p < 0.001, two tailed 

student’s t-test). 

 

Figure 4: Chronic drinking water As exposure altered cellular numbers into the BALF. 

Mice were exposed to control drinking water (white bars) or drinking water containing 

100 ppb As (black bars) prior to inoculation with influenza A. (A.) Viable nucleated cells 

recovered from BALF were counted by hemocytometer with trypan blue exclusion at 36 

hr, day 3 and day 7 post infection. Uninfected control and As exposed mice are shown for 

reference. Data represent mean ± SEM from one representative experiment (n=5-6 per 

group). (** p < 0.01, ***p < 0.001, two tailed student’s t-test). Extrapolation of total 

number of (B.) macrophages and (C.) neutrophils recovered from BALF. Uninfected 

control and As exposed mice are shown for reference. (D.) Neutrophils (dark gray), 

macrophages (light gray), and lymphocytes (medium gray) are represented as percentages 

of the total cells recovered. Equal volumes of BALF were prepared onto cytospin slides, 

stained and ten random fields per slide were counted by visualization of cell morphology 

(40x magnfication). Representative cytospin preparations are shown for: 36 hours p.i. 

(E.) flu alone (F.) flu and arsenic; 3 days p.i. (G.) flu alone (H.) flu and arsenic; 7 days 

p.i. (I.) flu alone (J.) flu and arsenic. Data represent mean ± SEM from one representative 

experiment (n=5-6 per group). (* p < 0.05, ** p < 0.01, ***p < 0.001, two tailed student’s 

t-test). 
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Figure 5: Chronic drinking water As exposure increased the percentages and total number 

of CD8+ cells in the BAL. Mice were exposed to control drinking water (white bars) or 

drinking water containing 100 ppb As (black bars) prior to inoculation with influenza A. 

(A.) Isolated BALF cells were stained with fluorochrome-conjugated antibodies against 

CD4 and CD8. Representative FACs plots are shown. (B.) The percentage of CD8
+
 cells 

and (C.) the average number of total CD8
+
 cells recovered from BALF at day 7 p.i. are 

shown. Data represent mean ± SEM from one representative experiment (n=5-6 per 

group). (* p < 0.05, two tailed student’s t-test). 

 

Figure 6: Chronic drinking water As exposure decreased cytokine and chemokine levels 

in the BALF at day 3 post infection. Mice were exposed to control drinking water (white 

bars) or drinking water containing 100 ppb As (black bars) prior to inoculation with 

influenza A. BALF was collected as described in methods at day 3 and day 7 post 

infection. BALF was analyzed using a luminex system for levels of IL1b, IL-6, MIP-1a, 

RANTES, MCP-1, IL-10, M-CSF, MIP-2, MIP-1b, and TNFα. Results for (A.) Rantes, 

(B.) MIP-2, and (C.) MCP-1 are shown. Data represent mean ± (n=5-6 per group). (* p < 

0.05, ** p < 0.01, ***p < 0.001 two tailed student’s t-test). 

 

Figure 7: Chronic drinking water As exposure decreased the number of dendritic cells in 

the MLN. Mice were exposed to control drinking water (white bars) or drinking water 

containing 100 ppb As (black bars) prior to inoculation with influenza A. (A.) Lymph 

nodes were collected, digested and single cell suspensions were counted using trypan 

blue exclusion with a hemocytometer. MLN cells were stained with fluorochrome-
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conjugated antibodies against CD11c, B220, and CD103.  The total number of  (B.) 

CD11c
+/

CD103
+
 and (C.) CD11c

+
/B220

+
 are shown. Data represent mean ± SEM from 

three representative experiments (n=5 per group) (D.) Bone marrow derived DCs were 

collected and cultured from uninfected control and As exposed mice. Following 

differentiation in culture in the presence of GM-CSF, cells were migrated in a transwell 

assay using ADP as a chemoattractant. Data represent mean ± SEM from three 

representative experiments (n=3 per experiment) and are expressed as mean cell 

migration relative to control mice. (* p < 0.05, ** p < 0.01, ***p < 0.001 two tailed 

student’s t-test). 
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Figure 1: Chronic drinking water As exposure increases the morbidity of influenza infection.  
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Figure 2: Chronic drinking water As exposure increases viral titers on day 7 post infection.  
190x254mm (72 x 72 DPI)  

 

Page 32 of 43



 

  

 

 

Figure 3A: Chronic drinking water As exposure increases capillary leakage at day 7 post infection.  
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Figure 3B and C: Chronic drinking water As exposure increases capillary leakage at day 7 post 
infection.  
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Figure 4A-C: Chronic drinking water As exposure alters cellular numbers in the BALF.  
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Figure 4D: Chronic drinking water As exposure alters cellular numbers in the BALF.  
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Figure 5: Chronic drinking water As exposure increases the percentages and total number of CD8+ 
cells in the BAL.  
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Figure 5B and C: Chronic drinking water As exposure increases the percentages and total number of 
CD8+ cells in the BAL.  
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Figure 6: Chronic drinking water As exposure decreases cytokine and chemokine levels in the BALF 
at day 3 post infection.  
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Figure 7: Chronic drinking water As exposure decreases the number of dendritic cells in the MLN.  
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Figure 7B and C: Chronic drinking water As exposure decreases the number of dendritic cells in the 
MLN.  
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Figure 7D: Chronic drinking water As exposure decreases the number of dendritic cells in the MLN.  
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